Degenerate Hopf Bifurcations in Discontinuous Planar Systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Degenerate Boundary Equilibrium Bifurcations in Planar Filippov Systems

We contribute to the analysis of codimension-two bifurcations in discontinuous systems by studying all equilibrium bifurcations of 2D Filippov systems that involve a sliding limit cycle. There are only two such local bifurcations: (1) a degenerate boundary focus, which we call the homoclinic boundary focus (HBF), and (2) the boundary Hopf (BH). We prove that—besides local bifurcations of equili...

متن کامل

Classification and Unfoldings of Degenerate Hopf Bifurcations

This paper initiates the classification, up to symmetry-covariant contact equivalence, of perturbations of local Hopf bifurcation problems which do not satisfy the classical non-degeneracy conditions. The only remaining hypothesis is that +i should be simple eigenvalues of the linearized right-hand side at criticality. Then the Lyapunov-Schmidt method allows a reduction to a scalar equation G(x...

متن کامل

Discretizing Dynamical Systems with Hopf-Hopf Bifurcations

We consider parameter-dependent, continuous-time dynamical systems under discretizations. It is shown that Hopf-Hopf bifurcations are O(h)-shifted and turned into double Neimark-Sacker points by general one-step methods of order p. Then we discuss the effect of discretization methods on the emanating Hopf curves. The numerical approximation of the critical eigenvalues is analyzed too. The resul...

متن کامل

Strange Attractors in Periodically-kicked Degenerate Hopf Bifurcations

We prove that spiral sinks (stable foci of vector fields) can be transformed into strange attractors exhibiting sustained, observable chaos if subjected to periodic pulsatile forcing. We show that this phenomenon occurs in the context of periodically-kicked degenerate supercritical Hopf bifurcations. The results and their proofs make use of a new k-parameter version of the theory of rank one ma...

متن کامل

Nilpotent Hopf Bifurcations in Coupled Cell Systems

Network architecture can lead to robust synchrony in coupled systems and, surprisingly, to codimension one bifurcations from synchronous equilibria at which the associated Jacobian is nilpotent. We prove three theorems concerning nilpotent Hopf bifurcations from synchronous equilibria to periodic solutions, where the critical eigenvalues have algebraic multiplicity two and geometric multiplicit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2001

ISSN: 0022-247X

DOI: 10.1006/jmaa.2000.7188